Manual to

DB7YBN's

Yagi Element Configuration Tool

Ref. Vers. 1.51 Written by Hartmut Klüver, DG7YBN on 2017-02-09

Index

1 Basics	3
1.1 The BC Sheet	4
1.2 Stop showing the Intro.	8
2 BC Modes	9
2.1 DG7YBN On-Boom with standard insulators.	9
2.2 DL6WU insulated through boom	9
2.3 DL6WU conductive through boom	10
2.4 Own BC number	10
2.5 SM5BSZ BC.exe insulated through boom	11
3 Other	12
3.1 Segmentation BC	12
3.2 Prefill Function	13
3.3 Exclude Element Diameter from Prefill	13
4 Data Base Management.	14
<u>4.1 Intro</u>	14
4.2 Internal Data Base	15
4.3 Save Samples	16
4.4 Delete Samples	16
4.5 Load Samples	<u> 17</u>
4.6 Behind the scenes.	17
4.7 About CSV file & Export / Import	<u> 18</u>
4.8 Acknowledgments	<u> 19</u>
5 Printout Sheet	<u> 19</u>
6 Import of NEC files	20
6.1 General Notes	<u>20</u>
6.2 NEC Card Sheet	<u>21</u>
6.3 Axis orientation of NEC model	22
6.4 Remove Folded Dipoles from NEC Card Sheet	22
6.5 Remove bent DEs and LFA Loops from NEC Card Sheet	<u>23</u>
6.6 Remove Offset to Z axis	24
6.7 NEC Card Excursion	<u>25</u>
7 Wind Load Module	<u>26</u>
7.1 Motivation & General Thought	<u>26</u>
7.2 Standards and general formulas	<u>27</u>
7.3 Computing the Dynamic Pressure	<u>29</u>
7.4 Computing the Projected Areas	<u>30</u>
7.5 Adding Ice Layers	<u>31</u>
8 Platforms	<u> 32</u>
9 Disclaimer	<u> 32</u>
10 Appendix	<u> 33</u>
10.1 Numbers and constants used	<u>33</u>

1 Basics

Applying the right BC to a Yagi will ensure getting the most out of its patterns characteristic. Yagis that are carefully designed for certain properties must be built with exact element lengths to take full advantage of these properties. Otherwise you will either loose gain or, more important in my view, add antenna temperature when building with imperfectly compensated boom and insulator influence. It is the F/B and F/R ratios, which will suffer with highest numbers on most designs otherwise.

History

From a simple MS Excel sheet that added BC numbers for On-Boom mounted elements this project grew to a large Visual Basic for Applications powered file. Little by little I added other BCs, automated read-in of NEC files and a data base structure including export to a CSV file.

This project started in 2012, when I released vers. 1.0.1 as 'Elements on Boom Calculator' - often referred to as 'BC Excel'. Since v. 1.24 I have renamed it to 'DG7YBN Yagi Element Configuration Tool' because today it holds much more features that a mere Boom Correction. Such as management of element positions on the boom with editable offset to boom ends or giving the elements centre position.

Meticulous Accuracy?

The Yagi Element Configuration Tool uses and produces numbers to two decimal places. You may ask how to produces these in the real world? My answer is, well you are not expected to necessarily, but note that every process or preliminary result is rounded in the input and calculation chain that finally puts out the to be cut element length. All these 'rounding derivations' will sum up. Sticking to two decimal numbers keeps up a lot more of accuracy down to the final number. And keeping to two decimal places does no harm. So I keep it accurate on high level. Until it is up to the final step, which is to cut the element.

Those who are well equipped with measurement tools and like to build for UHF are well advised to use or buy a calliper gauge of sufficient size and make plenty of use of it. Or stick to very conventional or wide band designs like the DL6WU series. I have been active building, measuring and plotting or consulting on number of highly developed 432 MHz Yagis for some years now. Among the Yagis handled where some of the most advanced designs present such as the EF7015, EF7017 and EF7023 by YU7EF, a 23 ele. LFA by G0KSC and my GTV 70-19. A delta of +/- 0.5 mm on the length of a number of elements makes a difference on most modern 70 cm designs if you want top performance and the right VSWR.

There are voices that mind that neither the last few 10th of dB in gain, nor a few dB in F/B or some Kelvin in Antenna Temperature would be of significant importance. But I say, now, when we have to cut elements off a long rod anyway, why not do it with the best of care for the right length and get the most from your self built antenna?

1.1 The BC Sheet

The BC_Sheet is the main sheet of the tool. It contains all the functions for BC computation and the necessary adjustments to this.

	A	В	C	D	E	F	G	Н	I	J	K	L	M	N	0
1	DG7	YBN Yagi	Element (Configura	tion Tool	Vers. 1.51	Build 2017-	02-09	□ Sho	w Startup Intro	Lang	uage / Sprach	e Get N	EC file ?	Wind Load Module
2	BC Mana	ger				Segm. B	с				1	Dete D	hen I	+ CVS 2	
3	Boom D	im. St	tate of Validatio	n _		_				Edit Design Not	е	Data Ba	ase > Loud		
	20 x 2	0 mm 🔽 尹 👎	tested	>	432 MHz 🔫 🖛	+ 434,67	4 🕨 W	ith Auto Segr	n.	GTV70-11 eler	n. 4 mm 20x2	0 mm BSZi	Save	Del. ?	
	Boom SI	hape BC	C - Mode	Ele.Diam	n. No.ofEle.	432.2		ith Seam as	designed	Pear & F	ront ∩ffeete	Full Longth	off li	angth in wi	
4	Square		5BSZ insulated	- 4.0 -		*		in cogni ac	later	Room 40	40	- Soco	mm -		
5		Br	n.thickn. Hole	Diam.		2,26	resulting	g SBC [mm]	?	B0011 40	40	2032		2,00	
6	Exclude	. 🔻 ? 📑	2.0 4 6.0		Prefill ?	_		<u>+</u>		Calc. E	sz -	Copy to Pr	int Sheet	Erase	
7	Ele. Dian		-					Add the	SBC						
8		Boom	Boom	Insulator	Element	Half	Element	Position		BBC+SBC:	Position	Element	Centre/Bore		
9	[mm] =>	Shape	Dim.	Hght/Spec.	Diam.	Length	Length	IN NEC	Base-BC	Full BC	on Boom	Length	Position		
10	D-4	<	Pretill Fun	iction only!	·····>	109.00	[mm]	[mm]	[mm]	[mm] 121 7.10	[mm]	[mm]	[mm]	จ	
12	Rell DE	Square	20 x 20	ins.thru	4,00	160,00	336,00	104.50	4,3	0 7,19	40,00	343,19	171,00		
12	DE D1	Square	20 x 20	ins.thru	4.00	163,20	318.00	160,50	6,0	0 <u>5,14</u> 8 764	144,50	325.64	167,77	2	
14	D2	Square	20 x 20	ins thru	4,00	156,00	312,00	145.50	52	8 7.54	185 50	319 54	159.72	7	
15	D3	Square	20 x 20	ins thru	4.00	151.00	302.00	428.00	52	6 7.52	468.00	309 52	154.76	5	
16	D4	Square	20 x 20	ins.thru	4.00	147.75	295.50	651.00	5.2	0 7.46	691.00	302,96	151.48	3	
17	D5	Square	20 x 20	ins.thru	4,00	146,00	292,00	902,00	5,1	6 7,42	942,00	299,42	149,7	ī	
18	D6	Square	20 x 20	ins.thru	4,00	144,25	288,50	1166,00	5,1	0 7,36	1206,00	295,86	147,93	3	
19	D7	Square	20 x 20	ins.thru	4,00	142,50	285,00	1439,00	5,0	12 7,28	1479,00	292,28	146,14	1	
20	D8	Square	20 x 20	ins.thru	4,00	138,75	277,50	1709,00	4,8	5 7,11	1749,00	284,61	142,31	1	
21	D9	Square	20 x 20	ins.thru	4,00	135,75	271,50	1952,00	4,0	19 6,35	1992,00	277,85	138,93	3	
22	D10										2032,00			_	
23	D11													_	
24	D12													-	
25	D13													-	
20	D14													-	
27	D15													-	
20	D17													-	
30	D18													-	
31	D19										_			-	
32	D20														
33	D21														
34	D22														
35	D23													_	
36	D24													-	
37	D25													-	
38	D26	-												-	
39	D2/													-	
40	D20													-	
41	D30														
43	D31													-	
44	D32														
45															
46															
H 4	H BC	Sheet / Pic	tured Instruction	ons / Printa	ut Sheet / NE	C_Cards 🖌 E	Blank 1 / Bl	ank 2 / FAQ	/ Release No	otes / Get Sym ,			<		

The 'BC Sheet' is organised in a header and a workspace section.

• Header: from left to right BC Manager, green field; Segm.-BC, light grey field; other and Data Base management & NEC import on left side

Workspace: from left to right :

- Prefill Area : (green // white) as first four columns: holding Boom Parameter and Elem. Diameter
- · Geometry section : (yellow) holding elem. lengths and positions on boom
- Output BC : (light blue) computed BC as Base-BC without SBC and Base-BC with added SBC
- Output Boom Position and corrected elem. length (grey) : Position on boom, corrected element length using the BBC + SBC and element centre position

Prefill Section

The Prefill section can effectively be used with the 'BC Manager's selection options. 'No. of Ele.' on the right is Number of Elements a to be entered design contains. The Prefill Function will fill in rows up to the given number of elements. In this example we see a 12 element Yagi, thus 'No. of Ele.' is adjusted to '12' and Prefill fills in rows [Refl, DE, D1 to D10] with chosen boom cross section dimensions, form (square / round) and, in case of DG7YBN On-Boom-BC, the height of the standard insulators the BC was derived with.

BC Manager		
Boom Dim.	State of Validation	
25 x 25 mm 🔽	🔸 tested 🛛 🔶	144 MHz 🔽 🗲
Boom Shape	BC - Mode	No.of Ele.
Square 🚽	7YBN on Boom 🔽	12 🖌 🕨
Exclude Ele. Diam. 🗖 🙎	1. Prefill	

	Boom	Boom	Insulator	Element
[mm] =>	Snape	Dim.	Height	Diam.
	<	Preilli Furi	cuon oniy!	>
Refl	Square	25 x 25	1,70	8,00
DE	Square	25 x 25	1,70	10,00
D1	Square	25 x 25	1,70	8,00
D2	Square	25 x 25	1,70	8,00
D3	Square	25 x 25	1,70	8,00
D4	Square	25 x 25	1,70	8,00
D5	Square	25 x 25	1,70	8,00
D6	Square	25 x 25	1,70	8,00
D7	Square	25 x 25	1,70	8,00
D8	Square	25 x 25	1,70	8,00
D9	Square	25 x 25	1,70	8,00
D10	Square	25 x 25	1,70	8,00
D11				
D12				
D13				
D14				
D15				

The BC sheet will only compute up to the last coloured line or row. Go back to the full screenshot image of the BC_sheet and find all three sections to be coloured to the line holding the numbers of D10 = element #12.

Geometry Section

The Geometry section is where you enter element lengths and positions on boom as in the NEC file or from given table or measured Yagi. Note: Position starts with ZERO = 0 for the Refl.

Half	Element	Position
Length	Length	in NEC
NEC	[mm]	[mm]
504,00	1008,00	0,00
476,00	952,00	243,00
474,00	948,00	428,00
470,50	941,00	780,00
459,00	918,00	1323,00
451,00	902,00	1968,00
445,50	891,00	2719,00
440,00	880,00	3542,00
434,50	869,00	4394,00
432,00	864,00	5284,00
428,50	857,00	6239,00
417,00	834,00	6874,00
		· · ·

When entering numbers from a NEC table by hand one commonly needs to double numbers as usually the wire ends are given symmetrically around the boom running down the x-axis.

In this sheet the columns 'Half Length in NEC' and 'Element Length [mm]' are corresponding in a way that whatever number is entered first – the other is complete automatically. Use it for either convenient fill in from a NEC model table or as 'helping hand' when entering numbers form a given design into a NEC geometry table.

Output BC Section

Clicking Button 'Calc.' will fill the rows of this section with computed BC (Base-BC), added Segmentation-BC (BBC+SBC) = Full BC, Element Position on Boom with rear and front Offsets per 'Boom Section' and Centre Position on Elements.

	•	Calc.	+	Copy to Print Sheet	3. Erase
--	---	-------	---	---------------------	----------

Button 'Copy to Print Sheet' puts all data to the Print Sheet. Button 'Erase' clears this section of computed numbers.

Base-BC [mm]	BBC+SBC: Full BC [mm]	Position on Boom [mm]	Element Length [mm]	Centre/Bore Position [mm]

Boom Numbers

	Rear & Front Offset	Full Length	Effec	tive true wL
Boom	30 -> 30	4176	mm =	5,93
	Calc. BSZ 🔶	Copy to Prin	nt Sheet	3. Erase

Enter Offsets to rear and front end of boom to your like. Find full length displayed in millimetres and wave length according chosen band.

Rear & I	Front Offset	Full Length	mm = 3	e true w i , 31
2. 0	alculate 🚽	Copγ to Pri	nt Sheet 3.	Erase
	Position	Element	Centre/Bore	
	on Boom	Length	Position	
	[mm]	[mm]	[mm]	
5,71	(40,00	1013,71	506,88	5
5,71	283,00	957,71	478,88	5
5,71	468,00	953,71	476,88	5
5,71	820,00	946,71	473,38	5
5,71	1363,00	923,71	461,88	5
5,71	2008,00	907,71	453,88	5
5,71	2759,00	896,71	448,38	5
5,71	3582,00	885,71	442,88	5
5,71	4434,00	874,71	437,38	5
5,71	5324,00	869,71	434,88	5
5,71	6279,00	862,71	431,30	5
5,71	6914,00	839,71	419,80	5
	6954,00			

Enter boom tube end offsets on rear and front end of the to be built Yagi. To edit these textboxes click into them with your mouse and type in a new number.

To process new entries the '2. Calculate' button must be clicked.

Find the first wire = reflector and complete set of elements shifted from position = 0 to the rear boom end offset. Find the boom length for building below last element position and in textbox 'Full Length'.

For analysts the Yagi Element Configuration Tool also the shows the effective length, as the electrical length without the rear and front offsets expressed in wave lengths (wL). The Tool uses c = 299.792.458 m/s for computing the wave length.

1.2 Stop showing the Intro

Vers. 1.316 beta Build 2014-11-26 👘 🔽 Show Startup Intro

The Yagi Element Configuration Tool shows 3 pop-up Messages during the start up procedure. Please read then carefully, but once you have done that you might want to start your sessions without having to wait for these messages to pass.

Just unhook the 'Show Startup Intro' option and set an end to this procedure for next start up, provided you save your copy of this tool.

2 BC Modes

2.1 DG7YBN On-Boom with standard insulators

Boom Dim.	State of Validation	
25 x 25 mm 🔫	tested	🛶 144 MHz 🔽 🗲
Boom Shape	BC - Mode	No.of Ele.
Square 🚽	7YBN on Boom 🝷	10 🛛 🕨
Exclude 🔲 🤶	1. Prefi	<u>.</u> .

A BC for use with standard plastic insulators made from furnace black Polyamide (PA 6) plus using a long shafted screw M3 all through the boom to keep element and insulator in place. Best results are yielded using pre defined element diameters of 8 mm (2 m band) respectively 6 mm (70 cm band). With these configurations I have done extensive testing and verification (s. Dubus Technik X). It will work for minor diameter derivations like from 8 to 6 mm with very little offset too.

Not checking the 'Exclude Ele. Diam' box means that the prefill function will overwrite whatever diameters for elements an imported or filled in model geometry had brought with it to the 8 / 6 mm standard depending on band chosen.

The element diameter is not a parameter in the DG7YBN On-Boom BC. Hence the numbers given, filled in or imported in this row have a documentation purpose only. BC numbers applied are gained from antenna measuring. Due to varying heights of the proposed insulators for different boom dimensions no formula can be set up here.

2.2 DL6WU insulated through boom

Boom Dim.	State of Validation	n		
25 x 25 mm 🔫	▶ tested		144 MHz	- +
Boom Shape	BC - Mode	Ele.Dia	im. No.o	fEle.
Square 🚽	6WU insulated	- 8,0	▲ ▶ 10	4 F
Exclude Ele. Diam. 💌 🙎		1. Prefill	7	ŗ_

This Mode uses the well known formula published by DL6WU / G3SEK for length correction of elements mounted insulated through boom. Note that no difference is made out between round and square boom shape with the DL6WU /G3SEK formula for insulated through boom.

The element diameter is not a parameter in the DL6WU / G3SEK formula. Hence the numbers given, filled in or imported in this row have a documentation purpose only.

2.3 DL6WU conductive through boom

Boom Dim.	State of Validation		_
25 x 25 mm 🔫	▶ tested	🗕 144 MHz 🔽	•
Boom Shape	BC - Mode E	Ele.Diam. No.of El	le.
Square 🔽	6WU conductive 🔫	8,0 ◀ ▶ 10 ◀	F
	0		_
Ele. Diam. 🗹 ?	1. Pi	refill 🕂	

This Mode uses the well known formula published by DL6WU / G3SEK for length correction of elements mounted conductive through boom.

Note (i) that no difference is made out between round and square boom shape with the DL6WU /G3SEK formula for insulated through boom; (ii) the difference between the 'insulated' and 'conductive' fastening correction is a fixed factor 2 for all frequencies and boom dimensions.

The element diameter is not a parameter in the DL6WU / G3SEK formula. Hence the numbers given, filled in or imported in this row have a documentation purpose only.

2.4 Own BC number

Boom Dim.	State of Validati	on
25 x 25 mm 🝷	▶ tested	🛶 144 MHz 🔽
Boom Shape	BC - Mode	Ele.Diam. No.of Ele.
Square 🔫	Own Number	- 8,0 + 10 + ▶
Exclude Ele. Diam. 💌 🙎	Own BC	1. Prefill

In this mode you may enter whatever Boom Correction you want as own number to suit not included building styles, experiments or while yourself testing for an new BC. Or simply to use this tool with DJ9BV, I0JXX or other BC. The number you adjust in the 'Own BC' textbox and the element length are added. The SBC can be added as an option, depending on hooking the 'Add SBC' option.

Segm.	-BC			
144,	6 -	+	as with Auto Segm.	
144,	2 -	+	with Segm. as desigr	ed
2,34	res	sulti	ng SBC [mm]	?
			💌 Add the SBC	

Example: Own BC is 3.4 mm, SBC is 2.34 mm, may the elem. length be 980.0 mm. This will result in 980.0 + 3.40 + 2.34 = 985.34 mm of corrected elem. length.

The element diameter for computing corrected element lengths is not a parameter to this BC mode. There is one sole BC number applied on the complete set of elements which must be assumed to have same or 'not to far astray' diameters. Use Prefill to fill in identical numbers for all elements or edit as suitable for own purpose and documentation.

2.5 SM5BSZ BC.exe insulated through boom

D OUTPU	T.BC - E	ditor							
Datei Bear	beiten Fo	ormat Ansicht i	?						
Boom co	prrecti	ons for 1	44.100	MHz					~
Boom shape Quadr Quadr Quadr Quadr Quadr Quadr Quadr Quadr Quadr	Boom D (mm) 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4	wall thickness (mm) 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	Hole diam (mm) 7.9 7.9 7.9 7.9 7.9 7.9 7.9	Element diam (mm) 6.35 6.35 6.35 6.35 6.35 6.35 6.35 6.35	Element length (mm) 1014.0 982.4 953.2 932.4 918.0 899.4 876.8 858.4	Dist to boom end (mm) 30.0 489.0 620.0 1042.0 1716.0 1494.0 725.0 30.0	Boom corr. (mm) 4.3 5.7 5.6 5.5 5.5 5.5 5.4 5.2 3.7	Corrected element (mm) 1018.287695 988.097201 958.777194 937.913251 923.464912 904.764833 882.006976 862.088017	2
<									>
							Z	eile 1, Spalte 1	

Screenshot of the original SM5BSZ Fortran based BC.exe.

BC.exe uses frequency, booms shape (round / square), booms outer dimensions, booms wall thickness, diameter of hole in boom to fit insulators, element diameter & length and distance of elem. position to *nearest* boom end as parameters.

With SM5BSZ BC mode the element diameter of **each** individual element row is read and used to produce the individual BC. In contrast to other BC in BC.exe the element diameter is an integral parameter. In this BC Mode it is possible to use different element diameters for each row as long as they fit same hole diameter and min./max. numbers at frequency and boom dimension.

3 Other

3.1 Segmentation BC

The Segmentation BC (SBC) is an additional length correction that works on the frequency derivation, that NEC computed SWR and Return Losses show, when the models wire segmentation is changed.

Find Base-BC and 'Full BC' as Base-BC + SBC in the table

Element Position Length in NEC		Base-BC	BBC+SBC: Full BC
[mm]	[mm]	[mm]	[mm]
335,00	0,00	4,65	6,45
315,00	104,50	6,66	8,46
316,30	153,00	5,34	7,14
313,00	246,00	5,37	7,17
303,00	428,00	5,28	7,08

Example: A highly segmented 144 MHz Yagi design models simulation shows best RL at 144.3 MHz. A simulation of same design model using EZNEC 'Auto Segmentation' function at 144.1 MHz on that model shows best RL shifts up to 144.7 MHz

SBC = delta freq. * Factor = 0.4 MHz * 5.85 mm/MHz = 2.3 mm

For factors used per band see appendix.

3.2 Prefill Function

nt
->
00
,00
00
00
00
00
00
00
00
00

With using the 'Prefill' function the number of rows as defined as 'No. of Ele.' is automatically filled in with

- Boom Shape
- Boom Dimension
- Insulator height (if on-boom-BC mode is selected)
- Element Diameter (if not excluded, s. § Exclude Element Diameter from Prefill)

3.3 Exclude Element Diameter from Prefill

With parameter Element Diameter excluded* from Prefill the column 'Element Diam.' shows a **white** background colour -as a sign that only the green field, columns 'Boom Shape', Boom Dim.' and 'Insulator Height' are subject to be filled in with numbers taken from the green field above.

Boom D	im. St	ate of Validatio	n		SegmBC
25 x 2	5 mm 🛨 尹 🕇	ested		144 MHz 🔽 🗲	→ 144,6
Boom S	hape BC	- Mode	Ele.Diam	No.of Ele.	144.2
Square	• <mark>-</mark> - (Own Number	- 8,0 ◀	▶ 10 ◀ ▶	*
Exclude Ele, Dian	n. 🗹 🙎 🖸	vn BC 3,4 • •	1. Pre	fill 🖓	2,34
	Boom	Boom	Insulator	Element	Half
[mm] =>	Shape	Dim.	height	Diam.	Length
	<	Prefill Fund	ction only!	>	NEC
Refl	Square	25 x 25	1,70	8,00	512,00
DE	Square	25 x 25	1,70	10,00	498,00
D1	Square	25 x 25	1,70	8,00	477,50
D2	Square	25 x 25	1,70	8,00	474,00
D3	Square	25 x 25	1,70	8,00	461,00
D4	Square	25 x 25	1,70	8,00	453,00
D5	Square	25 x 25	1,70	8,00	444,50
D6	Square	25 x 25	1,70	8,00	439,00
D7	Square	25 x 25	1,70	8,00	430,00
D8	Square	25 x 25	1,70	8,00	419,00
D9					

*) to understand the meaning of this it might take a little excurse to the history of this MS Excel: The first version enclosed the DG7YBN On-Boom BC mode only. Which I though to put out very correct numbers for the element diameters I had set it up with. Hence I programmed the prefill function in a way that it would overwrite any suggested other element diameters except for 8 mm on 144 MHz and 6 mm on 432 MHz.

With parameter Element Diameter included in Prefill the column 'Element Diam.' shows a **green** background colour - as a sign that it is included in Prefill now.

Boom D 25 x 29 Boom SI Square Exclude Ele. Dian	im. St 5 mm - t hape BC - C - C - C - C	ate of Validation ested - Mode Dwn Number <u>vn BC</u> 8,4	n Ele.Diam • 8,0 •	144 MHz No.of Ele.	SegmBC 144,6 144,2 2,34
	Boom	Boom	Insulator	Element	Half
[mm] =>	Shape	Dim.	height	Diam.	Length
	<	Prefill Fund	ction only!	>	NEC
Refl	Square	25 x 25	1,70	8,00	512,00
DE	Square	25 x 25	1,70	10,00	498,00
D1	Square	25 x 25	1,70	8,00	477,50
D2	Square	25 x 25	1,70	8,00	474,00
D3	Square	25 x 25	1,70	8,00	461,00
D4	Square	25 x 25	1,70	8,00	453,00
D5	Square	25 x 25	1,70	8,00	444,50
D6	Square	25 x 25	1,70	8,00	439,00
D7	Square	25 x 25	1,70	8,00	430,00
D8	Square	25 x 25	1,70	8,00	419,00
D9					

4 Data Base Management

4.1 Intro

Getting an antenna design with all the coordinates for elements and positions into the workspace is laborious. Therefore the Yagi Element Configuration Tool was fitted a data base system.

1. Internal data base: on 'BC_sheet' starting from row 100 and with any 100 rows offset reaching the next of the 200 sample data spaces starting row.

4.2 Internal Data Base

The 'on sheet' internal data base of this MS Excel tool holds storage place for 200 design samples.

A number of functions embedded in the tool helps you to manage your 'on sheet' samples, save, delete or recall a chosen design into the workspace cells.

The Data Base Management section holds three buttons and the 'Edit Design Note' textbox. Click into the textbox and edit the name of the actual design in workspace to your like. The max. length of the Design Note is 39 characters. This 'Design Note' will be used to name the data set of this design in the data base for your own identification when scanning the data base for later recalling of a design.

Manage Data Base ≻ Edit Design Note	Load +	CVS	?
GTV70-19m 4mm ele. 5BSZ_BC	Save	Del.	?

• Button 'Load + CSV' is for loading a design data set form internal data base (held in lower lines of this worksheet starting with line 100. Further to export / import a single data set or the complete internal data base to / from an external CSV file.

• Button 'Save' enables adding the actual design held in workspace to the internal data base.

Attention: Saving to the internal data base adheres SAVING this MS Excel before shutting the tool, since all new entries are a mere edit of the worksheet as in any standard MS Excel sheet action!

• Button 'Delete' enables deleting a selected data set form the internal data base.

4.3 Save Samples

Save Samples	
Mark a line to save the actual design in your workspace 24 : 25 : 403 MHz YBN RS-14w On Boom 8 mm ele. 26 : 432 5-Ele. Yagi ele. 4 mm ins.thru boom 27 : GTV70-19m 4mm ele. 5BSZ_BC 28 : GTV RS-19m 403 MHz 4 mm ele. 5BSZ_BC 29 : YBN RS 8 - 28 ohms, 4 mm ele 30 : 31 : 32 : 33 : 34 : 35 : 36 :	Save from Work- space to Excel
Save as No. with Design Note or edit here	Save Entry
32 GTV70-19m 4mm ele. 5B5Z_BC	
Exit Window	

Scroll the data base, mark a free line #, make final edits to the samples name and click 'Save Entry' to save a new design. In case the space is not empty you will be asked whether to really save or exit.

4.4 Delete Samples

Delete Samples	
Mark the line = sample to delete 18: 19: 20: 144 MHz tester BSZ BC-exe a 21: 144 MHz tester Front End of Boom 22: 144 MHz GTV 2-10LT ele. 4 mm BSZ 23: GTV2-12 narrow - 6 mm elem. SM5B5Z 24: 25: 403 MHz YBN RS-14w On Boom 8 mm ele. 26: 432 5-Ele. Yagi ele. 4 mm ins.thru boom 27: GTV70-19m 4mm ele. 5BSZ_BC 28: GTV RS-19m 403 MHz 4 mm ele. 30: 31:	Delete Sample from Excel Data Base
Exit Window	

Scroll the data base, mark the to be deleted design and click the 'Delete Entry' button. You will be asked whether to really delete or exit before the command is executed.

4.5 Load Samples

Load Sample + Import & Export	
Chose a sample to load No Sample Line selected 1 : 144 MHz GTV 2-12m mk2 ele. 8 mm 2 : 144 MHz GTV 2-12m mk2 ele. 8 mm 3 : 144 MHz GTV 2-10LT ele. 8 mm 4 : 432 MHz TV2-10LT ele. 8 mm 5 : 144 MHz tester Own BC 6 : 144 MHz tester B5Z BC-exe 7 : 144 MHz GTV 2-7n ele. 8 mm 8 : 50 MHz GTV 70-19m ele. 6 mm 10 : 432 MHz GTV 70-19m ele. 6 mm 11 : 432MHz GTV 70-19m Tester BCexe 13 : 144 MHz 23 ele tester B5Z BC-exe Events while handling this Data Set	Sample Data Set in/out to cvs file Export this All Import to No. All Sample to Workspace Load this
Exit Window	

Scroll the data base, identify the design to be loaded into the workspace area and mark it. Upon clicking the 'Load this' button you will be asked whether to really load this sample or exit when the workspace is not empty.

4.6 Behind the scenes

What happens when a sample design is being saved to the internal data base?

The complete content of the workspace Excel Cells from row 11 to 44 plus 'header information' containing Design Note, No. of Elements, BC mode, SBC frequencies etc. is copied to the lower part of the worksheet. This according the number chosen for the entry x 100. Example: Data Set 18 is to be found starting with row 1800.

What happens when a sample design is being loaded from the internal data base?

The complete content of the data space marked with the chosen number for the entry x 100 is copied from the lower part of the worksheet into the workspace Excel Cells from row 11 to 44 plus sorting 'header information' to replace last Design Note, adjust No. of Elements, BC mode, SBC frequencies etc.

4.7 About CSV file & Export / Import

What is a CSV file? Comma-separated values = CSV is a common file format standard used to store and / or exchange simply structured data. Often the semicolon is used instead of the comma. So do I in this application.

A CSV file can be viewed and edited with any editor as its content is plain text. The delimiting tag between data base entries is detected by the VBA code and by interpretation of order of listed next data field the program assigns the right cell on the Excel Sheet at import.

📝 C: VE	IC_ExcelV432 5-Ele.Yagi ele. 4 mm ins.thru boom.csv - Notepad++
Datei I	Bearbeiten Suchen Ansicht Kodierung Sprachen Einstellungen Makro Ausführen TextFX Erweiterungen Fenster ? X
E Da p	= = = = = = = = = = = = = = = = = = =
100	
🗄 Yag	i Elem_Config_Tool.htm 🗎 4325-Ele.Yagi ele. 4 mm inst.htru boom.csv
1	;Design Note;;No. of Elem.;BC Mode;Ele. Diam.;Boom Shape;Band. Index;Boom. Index;Frq_Auto_Segm;Ele.Diam.Off;Frq_Design_Segm;;Front Offset;Rear Offset;
2	;432 5-Ele.Yagi ele. 4 mm ins.thru boom;;5;4;4;0;4;4;32.2;1;432.2;;30;30;
3	;;;;;;;;;;;;; BC;
4	1;Square;20 x 20;ins.thru;4;169;338;0;4.69;4.69;30;342.69;171.35;;0;
5	2;Square;20 x 20;ins.thru;8;162;324;91;6.08;6.08;121;332.88;166.44;;Wall Thickn.;
6	3;Square;20 x 20;ins.thru;4;157.9;315.8;133;5.31;163;321.11;160.56;;2;
7	4;Square;20 x 20;ins.thru;4;154;308;266;5.28;5.28;296;313.28;156.64;;Hole Diam.;
8	5;Square;20 x 20;ins.thru;4;141.8;283.6;480;4.01;4.01;510;287.61;143.81;;6;
9	;;;;;;540;;;;
10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
11	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
12	;;;;;;;;vers. No.;
13	;;;;;;;;1.31;
14	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
15	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
16	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
17	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
18	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
19	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
21	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
22	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
23	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
24	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
25	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
26	*******
27	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
28	******
29	
30	·/////////////////////////////////////
31	******
32	······
33	
34	
20	
37	
30	
1 30	
Normal te	ext file

Sample single design CSV file generated with the 'Yagi Element Configuration Tool'

The CSV file system enables sharing designs and computed sets with other users without sending the complete MS Excel Workbook, data archival storing and last not least migration of data sets to newer or future versions of the 'Yagi Element Configuration Tool'.

Using the 'Export' > 'All' function enables to produce a complete copy of all present data sets in a convent way. Though writing and reading up to 200 data sets form / to CSV takes up to about 30 s. Progress in processing the started task is shown in percent

Either button click will open the standard windows 'Save as' window, in which you can sort path and name of the CSV file in the common MS Windows style.

Events while handling this Data Set					
Exported 40% of BC Excel Data Base to csv-file					
	Exit Window				
	Exit million				

On completion of the task, the program will show 'Data Base successfully imported / exported' in its 'Events' textbox.

Events while handling this Data Set					
Data Base successfully exported to F:\BC_Excel_Data_Base.csv csv-file					
Exit Window					

4.8 Acknowledgments

Note: The CSV file handlings core code is programmed by Christos Samaras See: <u>http://www.myengineeringworld.net</u>

5 Printout Sheet

Clicking the 'Copy to Print Sheet' will copy the content of the workspace into a printer friendly sheet, competed with a header space that holds all other parameters plus design description.

Effective true wL

Rear & Front Offset Full Length

			в	oom 40	-	40	► ►	6954 mi	m = 3,3	1			
									h				
					2. U	alculate	- Cot	ργιο Print S	neer 5. E	rase			
Desimul	bl-+										Our stad wi		
Design r	Note: 19m / mm	olom 5879	S BC								Ureated wi	th DG7 te	N BC 1001
01070-1	15111 4 11111	elem. SDZc	500								VEIS.		16,1
Boom D)im.:	20 x 20 m	m	f-auto:		434,2 MHz		Len. mech.:	4176 mm		Hole Diam	.:	6 mm
Boom S	Shape:	Square		f-des:		432,2 MHz		Len. electr.:	5,96 wL		Boom Wal	I Thickn.:	2 mm
BC Mod	le:	5BSZ insu	lated										
	Deem	Been	Inculates	Element		LI – If		Desition			Desition	Element	Bawa
[mm]=1	Boom	Boom Dim	Insulator	Diam		Halī Longth	Longth	Position	Doos DC	BBU+SBU:	Position	Longth	Bore Decition
[mm] =>	> Ouabe	Drofil Eu	neigni motion onl	Diam.		Length NEC	Lengin	In NEC	Dase-DC		Imml	Length	Position
	<	Prenn Pu	Inction on	IÀi	>	NEC	[mm]	[mm]	fuuul	[mm]	[mm]	[mm]	[mm]
Refl	Square	20 x 20	ins.thru		4	167,5	335	0	4,65	6,45	30	341,45	170,73
DE	Square	20 x 20	ins.thru		10	157,5	315	104,5	6,66	8,46	134,5	323,46	161,73
D1	Square	20 x 20	ins.thru		4	158,15	316,3	153	5,34	7,14	183	323,44	161,72
D2	Square	20 x 20	ins.thru		4	156,5	313	246	5,37	7,17	276	320,17	160,09
D3	Square	20 x 20	ins.thru		4	151,5	303	428	5,28	7,08	458	310,08	155,04
D4	Square	20 x 20	ins.thru		4	148,75	297,5	641	5,22	7,02	671	304,52	152,26
D5	Square	20 x 20	ins.thru		4	147	294	888	5,19	6,99	918	300,99	150,50
D6	Square	20 x 20	ins.thru		4	145,75	291,5	1152	5,16	6,96	1182	298,46	149,23
D7	Square	20 x 20	ins.thru		4	143,75	287,5	1425,5	5,11	6,91	1455,5	294,41	147,21
D8	Square	20 x 20	ins.thru		4	142	284	1707	5,06	6,86	1737	290,86	145,43
D9	Square	20 x 20	ins.thru		4	141,25	282,5	1992	5,04	6,84	2022	289,34	144,67
D10	Square	20 x 20	ins.thru		4	140,25	280,5	2270,5	5,01	6,81	2300,5	287,31	143,66
D11	Square	20 x 20	ins.thru		4	139,75	279,5	2545	4,99	6,79	2575	286,29	143,15
D12	Square	20 x 20	ins.thru		4	139,5	279	2818	4,98	6,78	2848	285,78	142,89
D13	Square	20 x 20	ins.thru		4	138,5	277	3080	4,94	6,74	3110	283,74	141,87
D14	Square	20 x 20	ins.thru		4	138,5	277	3344	4,93	6,73	3374	283,73	141,87
D15	Square	20 x 20	ins.thru		4	137,25	274,5	3608	4,87	6,67	3638	281,17	140,59
D16	Square	20 x 20	ins.thru		4	135,5	271	3883	4,74	6,54	3913	277,54	138,77
D17	Square	20 x 20	ins.thru		4	134	268	4116	3,82	5,62	4146	273,62	136,81
	End of ho	om = >									4176		

Note: Always use the 'Printout Sheet' for printing. Due to the attached internal data base the workspace sheet hold up to 20000 lines ... on which you would probably not like to waste paper, ink and time on.

6 Import of NEC files

6.1 General Notes

The Yagi Configuration Tool can import antenna models from a NEC file that has the format as described in the original NEC manual from the Lawrence Livermore Laboratories. The Tool can convert a NEC file that has the antenna wire coordinates coded in 'Symbols' as Arie Voors's 4nec2 uses them whenever the Optimiser is run.

Since it is likely that the NEC files data need to be conditioned for use in the Tools workspace on the BC_Sheet any import of NEC files has to be done in two steps

- Swap to the 'NEC Card' sheet of the Excel workbook and click the 'Import a NEC file' button. This will open the standard file dialog object window of the MS Windows system32 API. In which a path and **.nec** file can be selected. Then check your import on needed orientation of coordinates, check if any coordinates are packed in symbols and eliminate complex drivers. Now you design in ready to be copied into the main BC workspace.
- 2. Swap to the 'BC_Sheet' and use the 'Get NEC file' button to cast the conditioned NEC import into the workspace.

Help Text Language	Get NEC file	?
Manage Data Base >	Load + CVS	?

For a clean import the .nec file that serves as source must be completely conform to the definitions used in the NEC manual, see § NEC Card Excursion.

Possible source programs of .nec files

The Yagi Element Configuration Tool is extensively tested with files generated by 4nec2. Whereas files originating from MMANA or EZNEC V 5+ do not work out. EZNEC uses a binary coded file data system. However to get an EZNEC made design into the Yagi Element Configuration Tool it can be opened and saved using 4nec2 to derive a compatible .nec file.

Where to find the .nec file of the wanted design?

4nec2 holds antenna design files in the following folder

C:\progams\4nec2\models

6.2 NEC Card Sheet

NEC Imp	oort Wor	kbench								Status	
						Eman all				done	Import
						Erase all	impor	La NEC IIIe		done	found GW Cards?
										is clean	holds Symbols?
			Swap	х- y	Swap	y - z	? Trace	z Remo	ve Offset in z	10	No. of Wires
NEC Cards											
GW			End 1 in x	End 1 in y	End 1 in z	End 2 in x	End 2 in y	End 2 in z	Ele. Radius	Pomov	Symbols
65			Scaling Fact.		Comments					Kentov	e oymbols
FR					⊢req.					Char	la if ala an
	Wire No.	No. of Segm.	Pos.on Boom	Half Ele. Lgt.						Cnec	K IT Clean
CE											
GW	1	27	0	-0,097	0	0	0,097	0	0,002	2	
GW	2	27	0,07600001	-0,0875	0	0,07600001	0,0875	0	0,0025	5	
GW	3	26	0,098	-0,0785	0	0,098	0,0785	0	0,002	2	
GW	4	26	0,154	-0,0775	0	0,154	0,0775	0	0,002	2	
GW	5	25	0,239	-0,0745	0	0,239	0,0745	0	0,002	2	
GW	6	25	0,357	-0,0725	0	0,357	0,0725	0	0,002	2	
GW	7	24	0,481	-0,0715	0	0,481	0,0715	0	0,002	2	
GW	8	24	0,615	-0,07	0	0,615	0,07	0	0,002	2	
GW	9	24	0,758	-0,0665	0	0,758	0,0665	0	0,002	2	
GW	10	23	0,89	-0,065	0	0,89	0,065	0	0,002	2	
GE	0										
LD	5	1	0	0	2,50E+07	0					
LD	5	2	0	0	2,50E+07	0					
LD	5	3	0	0	2,50E+07	0					
LD	5	4	0	0	2,50E+07	0					
LD	5	5	0	0	2,50E+07	0					
LD	5	6	0	0	2,50E+07	0					
LD	5	7	0	0	2,50E+07	0					
LD	5	8	0	0	2,50E+07	0					
LD	5	9	0	0	2,50E+07	0					
LD	5	10	0	0	2,50E+07	0					
LD	5	11	0	0	2,50E+07	0					
LD	5	12	0	0	2,50E+07	0					
LD	5	13	0	0	2,50E+07	0					
EX	6	1	14	0	1	0					
GN	-1										
FR	0	1	0	0	840	0					

The Info box shows whether the model hols 'Symbols' and state of import from .nec file. In case it does not show a clear & corresponding 'No. of Wires' the import did not work out.

done	Import
done	finding GW Lines
is clean	holds Symbols?
8	No. of Wires

If it does, follow the checklist below to dress the data for moving them to the workspace on the 'BC_Sheet':

• Check if the Yagi models orientation is with boom in x-axis:

If so, we find the element positions in column 'End 1 in x'. If not, swap orientation by mirroring the coordinates by using the 'Swap x-y' and / or 'Swap y-z' buttons.

• Check if the model holds on offset in z-axis after (1) is achieved.

Usually this is 'height' for simulations over ground. Both columns 'End1 in z' and 'End2 in z' shall show '0', If not, use button 'Remove Offset in z', enter to be shifted distance to zero and submit. The 'Trace z' function searches for entries with one or both wires ends having offset to z = 0 and marks those with red background colour.

• Check if the model holds a complex structure for Driver (Loop or bent Dipole)

The BC computation is built around a standard Yagi with a single wire (Straight Dipole) as Driver. For LFA Loops use one of the two wires rectangular to the boom only. For bent Dipoles use the span width only, but with boom position as middle section. This is an all VBA programmed MX Excel, but still an Excel sheet. You can delete multiple

Driver wires by hand. Just delete as many complete 'GW' rows as needed to leave a single GW row for the Driver remaining. Enter span width or suitable number in there.

6.3 Axis orientation of NEC model

6.4 Remove Folded Dipoles from NEC Card Sheet

Remove all rows holding GW Cards that form the arced ends and upper arm of the folded dipole. Then prolong the fed wire to the original span width of the ex-Folded Dipole, measured on outer ends.

6.5 Remove bent DEs and LFA Loops from NEC Card Sheet

The Yagi Element Configuration Tool can only process straight single wires, like standard elements and straight split drivers. Complex drivers have to be reduced to a single wire.

Example (1) Bent DE : the "GW" card lines holding the bent arms must be deleted as entire rows on the MS Excel sheet. The straight mid section must be prolonged to the original span width of the bent DE. Thus the BC to be applied to the bent DE can be produced as if it still would be present in its complex structure.

Example (2) LFA Loop : the "GW" lines holding the side arms and one of the parallel long wires must be deleted as entire rows on the MS Excel sheet. With just one wire or "GW" card line left the BC to be applied to the LFA Loop can be produced as if it still would be present in its complex structure.

6.6 Remove Offset to Z axis

End 1 in z	End 2 in x	End 2 in y	End 2 in z
Freq.			
40		0.400	10
16	0 1015	-0,182	16
16	U,IZIO 0 101	-0,1702	16
10	101,0 102,0	-0,1665	10
16	0,500	-0,16125	16
16	0.7615	-0.15775	16
16	1.019	-0.1555	16
16	1,246	-0,1505	16

all of the directing elements wires show an offset of 16 mm in height. This might be due to a simulation model that includes the offset between element and driven element planes on a real build.

This coordinated for reflector wire ends and

Using the 'Trace z' function will
Automatically highlight these rows
In orange background colour.

End 1 in z	End 2 in x	End 2 in y	End 2 in z
Freq.			
16	0	-0,182	16
0	0,1215	-0,1702	0
16	0,181	-0,1685	16
16	0,306	-0,1655	16
16	0,516	-0,16125	16
16	0,7615	-0,15775	16
16	1,019	-0,1555	16
16	1,246	-0,1505	16

Remove Offset in H	leight 🛛 🔀					
Enter to be removed Of	fset in z					
(Deutsche User, bitte mit Komma eingeben)						
16.0						
16.0	OK Abbrechen					

Clicking the button 'Remove Offset in z' brings up this little popup form here. Please enter the Offset that shall be removed. Attention, in here the decimal separator is sensitive.

Select 'Ok' to proceed. All GW Cards that are not on z = 0 will have the entered distance subtracted from the coordinates of their wire ends in z direction.

6.7 NEC Card Excursion

On the left side of the 'NEC_Card' sheet you find the tags used in NEC Cards convention to give those lines a meaning. The NEC Manual refers to these as 'Program Control Cards'

NEC Card notations

NEC Tag	Description	Official name
СМ	Design description	Comment Cards
GW	Geometry coordinates of end points of wires	Wire Specification Cards
LD	holds the loss of the chosen material; Lossless models do not hold LD lines	Loading Cards
EX	Specifies where the source is (feed point)	Excitation Cards
FR	Frequency in MHz	Frequency Card
GS	Scaling factor	Scale dimensions

The most common and relevant NEC Cards

Scaling factors - other units then meters

The NEC Card notation uses meters as baseline measure.

However some models are designed with different measures, like in inch or millimetres. If so, we find a line holding the scaling factor. The Yagi Element Configuration Tool uses millimetres strictly, when moving the model imported to the 'NEC_Card' sheet, care is taken of a possible scaling factor and the geometry is processed to millimetres when cast into the workspace on 'BC_Sheet'.

Example of applied scaling factor

GS = scaling structure dimensions example: from ft to meters : GS 0 0 0.3048 NEC itself calculates in meters only

Find ore read in the source of the given above small details, which is the

NEC-2 Manual, Part III: User's Guide*

*) Burke, G. J., Poggio, A. J., Lawrence Livermore Laboratory: Numeric Electromagnetics Code (NEC) – Method of Monents, Part III: Users's Guide, UCID – 18834, Jan. 1981

See 'section III, Program Input', pg. 14ff

7 Wind Load Module

Read carefully please!

The version 1.51 Wind Load Module is a BETA version. Results are not fully tested. Do not use the computed wind loads for official structural analysis without checking against suitable references.

Wind Load Module Beta 0.11
Fastest Wind Speed (typ. 80 / 160 kmh) as 3 sec gust: for speed in 87 Image: State st
Select Standard 'As is' Area by Wind Speed
No. of Clamps Height(mm) Width(mm) cw (drag coef.)
Strut Ice Layers Add Ice Layers: V 1/4" 1/2" 3/4" ?
Resulting Wind Loads
27,6 Elem.(N) 44,8 Strut (N) projected Wind Area 125,8 Total (N)
50,5 Boom (N) 2,9 Clamps (N) 0,196 (m2) 28,3 Total (lbs)
Additional Loads (Weight) due to Ice Layer
70,9 Elem.(N) 111,8 Strut (N) 318,7 Total Weight (N)
126,1 Boom (N) 9,9 Clamps (N) 71,6 Total Weight (lbs)

7.1 Motivation & General Thought

I was in need of wind load numbers for own Yagi-Uda designs and while studying basic formulas for wind load calculation it came to me that the Yagi Element Configuration MS Excel already holds all the needs boom and element geometry data for summing up the projected area and choosing drag coefficient by shape of boom.

7.2 Standards and general formulas

• Common Formula / Open for all Input

Select Standard	
'As is' Area by Wind Speed	•
'As is' Area by Wind Speed	
EN 60728-11 less 20 m	
EN 60728-11 higher 20 m	
EN 60728-11 mountains, coastal	
near EIA-222-C	
near EIA-222-F	

For "'As is' Area by Wind Speed" the common formulas are used

 $F = cd \cdot area \cdot Dyn \operatorname{Pr} essure$ $Dyn \operatorname{Pr} essure = 0.5 \cdot DensityAir \cdot windSpeed^2$

• European Standards

Select Standard	
'As is' Area by Wind Speed	-
'As is' Area by Wind Speed	
EN 60728-11 less 20 m	
EN 60728-11 higher 20 m	
EN 60728-11 mountains, coastal	
near EIA-222-C	
near EIA-222-F	

For "*EN 60728-11 less 20 m*" meaning antenna height below 20 m a fixed Dynamic Pressure of 800 N/m² is used. So wind speed edit is frozen for this option

Select Standard
'As is' Area by Wind Speed 📃 💌
'As is' Area by Wind Speed EN 60728-11 less 20 m
EN 60728-11 higher 20 m
EN 60728-11 mountains, coastal near EIA-222-C
near EIA-222-F

For "*EN 60728-11 higher 20 m*" a fixed Dynamic Pressure of 1,100 N/m² is used. So wind speed edit is frozen for this option

Select Standard	
'As is' Area by Wind Speed	-
'As is' Area by Wind Speed EN 60728-11 less 20 m EN 60728-11 higher 20 m	
EN 60728-11 mountains, coastal	
near EIA-222-C	
near EIA-222-F	

For "*EN 60728-11 mountains, coastal*" a fixed Dynamic Pressure of 1,250 N/m² is used. So wind speed edit is frozen for this option

• US Standards

Actually the following EIA-222 standards are used for structural analysis, the quest *IF* an exposed structure withstands a certain wind force. It may however be welcome to compute a Yagi antennas wind load at same settings.

Select Standard	
'As is' Area by Wind Speed	-
'As is' Area by Wind Speed EN 60728-11 less 20 m EN 60728-11 higher 20 m EN 60728-11 mountains, coastal	
near EIA-222-C	
near EIA-222-F	

For "*near EIA-222-C*" a set of three fixed wind speeds are used according chosen Exposure Category to compute the dynamic pressure

 $F = cd \cdot area \cdot dyn_pressure$

With 3 defined wind speed zones:

Exposure Category A sets wind speed to:	86.6 mph
Exposure Category B sets wind speed to:	100.0 mph
Exposure Category C sets wind speed to:	111.8 mph

Select Standard	
'As is' Area by Wind Speed	•
'As is' Area by Wind Speed EN 60728-11 less 20 m EN 60728-11 higher 20 m EN 60728-11 mountains, coastal near EIA-222-C	
near EIA-222-F	

For "*near EIA-222-F*" a wind speed according landscape wind speed zone maps shall be selected. This standard uses a "*3 sec gust*" instead of fastest mile throughout. So any entered fastest mile wind speed is computed in to a referring gust speed. See next page for details.

 $F = cd \cdot area \cdot dyn_pressure \cdot Kz \cdot Gh$

With Exposure Coefficient $Kz = [z/33]^{(2/7)}$ wherein z = height above average ground to midpoint of item ... the Yagi as "*Height Ant.* (m)"

Select Standard	Height Ant. (m)
near EIA-222-F	10 +

and Gust Response Factor $Gh = 0.65 + 0.60/(h/33)^{(1/7)}$

7.3 Computing the Dynamic Pressure

• Wind Speed

The module uses wind speed in m/sec throughout. For this it is checked which option is chosen and the "raw" entered number is multiplied with an adequate factor as shown:

If entered in km/h then

wind _ speed _ mps = wind _ speed _ raw + 1000/3600

If entered in miles/h ("fastest mile" in ANSI/TIA standards terminology) then

wind speed mps = wind speed $raw \cdot 1.609 \cdot 1000/3600$

If the module shall use "3 sec gust" instead of fastest mile

 $wind _speed _mps = 0.00006 \cdot wind _speed _mps^2 + 1.0444 \cdot wind _speed _mps + 4.8055$ which is a function gained from the TIA-222-G specs table that holds fastest mile and corresponding 3 second gust numbers.

Constants used

Density of Air = 1.293 kg/m³ at 0°C and 1 bar

• Dynamic Pressure

```
Dyn_{pressure} = 0.5 Density_{Air} wind _{speed} _{mps}^{2}
```

7.4 Computing the Projected Areas

Projected Area (Ap) means largest face side of structure multiplied by drag coefficients of the individual patches according their shape.

• Elements

The module skims through the rows of the active set in the workspace and sums up actual element lengths including Boom Correction "BBC+SBC = Full BC" and the actual diameter of each. Drag coefficient used is "cd = 1.2"

All non empty rows are being summed up to a total projected element area then

• Boom

Reading the booms geometry and shape from the active set in the workspace of the " BC_sheet " and using "cd = 2.0" for Square Booms, "cd = 1.2" for Round Booms. Front and rear offset of boom are included. Area boom is total length of boom by height (square shape) or diameter (round shape) of boom.

*Ap*_boom = boom_length · boom_height · cd_boom

• Strut

This uses same geometry specs for the strut as the boom is made of. Area strut is length of strut by height or diameter of boom.

Mast Clamp

With *cd* being the drag coefficient of the mast clamps base plate only. The "*cd_clamps*" can be edited. Useful numbers are from 0.9 to 1.2. <u>Small details like screws and fastening</u> <u>brackets are not included</u>. Hence to be on the safe side one could opt for an additional clamp, one more that actually installed.

*Ap*_mast_clamps = no_of_clamps · area_clamps · cd_clamps

7.5 Adding Ice Layers

This option enables adding layers of ice all around the antenna including mast clamps and strut. Just as real ice would.

Ice Layers ——		
Add Ice Layers:	▼ 1/4" □ 1/2" □ 3/4"	?

• Opting ice layers adds chosen thickness all around elements, boom, strut and mast clamps.

Example: An element of diameter x will be coated with ice all around

Length _ iced = Length + 2 · t _ ice

• The ice layer imposes severe additional weight as down facing load adding stress to the mere wind load of the antenna. Which consequently should be taken into account for structural analysis of mast pole or tower

Additional Loads (Weight) due to Ice Layer					
70,9	Elem.(N)	0	Strut (N)	206,9	Total Weight (N)
126,1	Boom (N)	9,9	Clamps (N)	46,5	Total Weight (lbs)

Constants used

Density of ice = 918 kg/m³ = 918000 N/m³

*Diameter*_*iced* = *Diameter* + 2 · *t*_*ice*

8 Platforms

The 'Yagi Element Configuration Tool' is tested on the following systems

- MS Excel 2003 on MS Windows XP Professional
- MS Excel 2007 on MS Windows XP Professional
- MS Excel 2010 on MS Windows 7 Professional

It should do fine with any 'non Pro-version' of MS Windows XP and MS Windows 7 too.

Sorry, due to the implementation of those handy file systems objects (fso) to open, load or safe CSV and NEC files the following elder versions of MS Windows are not suitable to run this application on:

- MS Windows 95 + 98
- MS Windows 2000
- MS Excel from the 97 MS Office ... are not supported.

64 Bit?

A 64 bit Operating System like win7 Professional itself is no problem, but a 64 bit MS Excel still is, due to the definition of 64 bit data words and calls to API DLLs. This can be solved, a part of this is done already. But up to today I do not have a 64 bit MS Excel installation to test with.

9 Disclaimer

The Yagi Element Configuration Tool is an MS Excel with several thousand lines of Visual Basic for Applications (VBA in vers. VB 6.0) code running in the background. As this is not compiled runtime code it can easily be manipulated and seriously harm your computer or do harm to files on it.

Using this file is no own risk. No guarantee is given whatsoever. Use only downloads / files from known & save source.

The logos, notations, brands and trade names shown or mentioned in this manual are the property of the correlating companies and are subject to trademark rights!

Hartmut Klüver, 2017-02-09

10 Appendix

10.1 Numbers and constants used

Frequencies used per band selected

Band	Freq. used for BC calculation [MHz]	
50 MHz	50.10	
70 MHz	70.10	
144 MHz	144.20	
222 MHz	222.10	
432 MHz	432.20	
403 MHz	403.00	

SBC Gradient used per band selected

Band	Gradient used for SBC [mm/MHz]	
50 MHz	16.50	
70 MHz	12.50	
144 MHz	5.850	
222 MHz	2.8751	
432 MHz	0.9149	
403 MHz	1.0200	

Speed of Light

c = 299.792.458 m/s

BC Formulas

For DL6WU/G3SEK the original formulas are in operation

For SM5BSZ BC.exe the complete Fortran coded original in the extended to correct scaling of frequency version as per VE7BQH and SM5BSZ is rebuilt in Visual Basic and may be used on courtesy of SM5BSZ